A comparison of FDA, EMA & PMDA regulatory guidance for in vitro drug-drug interaction (DDI) assessments

该网上白皮书文章探讨了2020年的监管变更美国FDA指导1与现有的建议和建议欧盟EMA.2日本PMDA3对此的指导体外药物 - 药物相互作用(DDI)评估

The Evolving Regulatory Landscape

Since 1997 the regulatory agencies, FDA, EMA and PMDA have endorsed the use of体外代谢研究评估新化学实体的DDI潜力(NCE)。然而,在过去的10年中,科学进步已经迅速,通过复杂的体外模型和Silico预测计划推动。

Today the use of modern in vitro techniques allows for more accurate prediction of the DDI potential of NCEs. With a greater understanding of the enzymes and transporter proteins that determine the disposition of drugs in the body,科学家可以从体外数据到体内情况进行更准确的外推

例如,体外数据可以有助于预测临床开发前和期间新化合物的临床参数,并且还可以用于更好地预测药物反应的间间变化,支持个性化医学概念。

反映这种科学进步,FDA.,ema.和日本MHLW (PMDA)已发布更新的指导意见/指南[1,2,3]概述应该获得的体外数据以及如何处理潜在临床评估和标签的可能后果。最近,日本PMDA DDI评估的发展综述发表4

以下时间表概述了该地区的FDA,EMA和PMDA指导的发展。

DDI监管指导如何随着时间的推移而变化。

监管机构的DDI评估方法更加统一

所有主要监管机构(FDA,EMA,PMDA)向DDI测试建议类似的方法,尽管较小的差异,特别是用于运输扣和CYP诱导,是显而易见的。

Furthermore the guidance is not overly prescriptive on the exact experimental testing needed and welcomes a variety of methodological approaches, provided they are based on well-validated and scientifically-sound models, particularly with respect to transporters.

最近的FDA和PMDA指导的主要变化与EMA对齐,是使用未结合的调查药物浓度(不是总药物)来计算DDI R切断值。

This change makes regulatory submissions easier by providing maximum flexibility for the methods used during DDI assessment. This flexibility is especially important for drug transporter interaction assessments, where scientific understanding is growing rapidly and assay validations are still in development. However some regulatory areas are not yet fully clarified across agencies. For instance, there is not any specific cut-off for poorly soluble drugs in the evaluation of inhibition and induction of enzymes or any specific guidance for UGT enzymes or some gut interactions.

了解受害者和肇事者药物测试分类

在药物 - 药物相互作用评估中,药物被归类为‘victim’ drugs(受其他药物影响的药物)或'犯罪者'毒品(导致受害者药物代谢/ PKS改变的药物)。

监管指导表明,各种模型将药物视为受害者和肇事者,但以下是用于通知决策过程的最常见模型:

  • A basic model, using体外测试
  • 使用更多的动态模型PBPK建模

动态PBPK建模具有基本模型的优势,因为它更容易评估和研究相互作用的幅度和复杂性。

DDI在临床开发前期需要进行体外评估

在他们的2020指导,FDA建议在临床测试开始之前进行体外DDI评估,现在形成了IND / CTA启用程序的一部分。

由于体外DDI实验突出了多个间隙途径的潜在影响,特别是如果通过肇事者共同用药关闭,则早期的评估将导致更好的临床候选者并降低临床相关DDI的风险。

This timeline shrinkage is especially important in therapeutic areas such as oncology where there is a vital requirement to move into clinical studies rapidly since patients will likely be on concomitant medications.

总体而言,评估调查新药物(IND)的DDI潜力涉及:

  • 确定NCE的消除的主要路线
  • 估算代谢酶和运输工具对NCE清除的贡献
  • 表征NCE对酶和转运蛋白的影响

最终,体外数据艾滋病决策是针对人类志愿者的临床DDI研究是否受到调查。它可以指导人类志愿者临床互动研究的设计,并协助产品标记与其他可能的伴随药物。

1月2020年1月的FDA指南提供了进行临床DDI研究的指导:临床药物相互作用研究 - 细胞色素P450酶和转运蛋白介导的药物相互作用的工业指导5

在一起,体外和临床指导文件描述了一种基于风险的基于风险的方法来评估调查药物的DDI潜力,并提出建议,以减轻DDIS。

测试代谢物的指导

The FDA, EMA and PMDA guidance(s) now require major metabolites of parent drugs (or those that contribute significantly to pharmacological activity or contain structural alerts for known DDI mechanisms) to be assessed for DDI potential.

The EMA also recommends assessment of the contribution from definitive in vivo data (metabolites that represent >10% of drug-related exposure observed during the14.C人类AME质量平衡研究)。

通常,对于代谢物,一个体外CYP酶和/或转运抑制研究被推荐:

  • 如果代谢物比母体药物和AUC较少代谢物≥25%的AUCparent
  • 如果代谢物比父挖和AUG更偏振代谢物≥aucparent
  • for metabolites with structural alerts for time-dependent inhibition (TDI)

当研究代谢物的抑制作用时,应在包括50×C的范围内设定浓度最大限度(未结合的浓度)代谢物,类似于不变药物的情况。

DDI测试作为受害者药物

反应表型:测试作为药物代谢酶和转运蛋白的基材

反应表型研究可以帮助探讨药物受害的程度。今天有助于塑造药物行业的许多历史吸毒 - 例如Terfenadine和Astemizole - 由于它们对毒品 - 药物相互作用作为受害者而不是作为犯罪者而制造的!一种具有高分子代谢的新药物(F.m, indicating a single enzyme dominating clearance) with a narrow therapeutic window will be at risk of non-approval.

DDI评估通常从基本实验建模的使用开始,下面讨论了用于评估受害者药物潜力的主要方法。

通常,通过多种酶代谢的药物的所有机构的视图具有比单一酶代谢的药物的较低的DDI电位。多种代谢途径降低DDIS作为一种代谢途径的闭合(例如,通过伴随药物)不太可能导致消除途径的完全丧失。

此外,了解药物的酶学允许更大评估潜在的DDI和药物疗效的间间变异,如果例如多晶型或诱导酶涉及。

应进行反应表型研究以确定参与代谢物形成的主要药物代谢酶。这些酶包括I相酶CYP(包括新闻组织如CYP2J2和4F2),黄蛋白单氧酶(FMO),醛氧化酶,单胺氧化酶(MAO),羧酸酯酶和醇/醛脱氢酶(ALDH)等。还必须进行缀合物代谢物测定,包括UGT和磺酰转移酶(SULL)。

监管指导比较

FDA.2020

FDA建议公司确定哪些酶负责≥25%的药物的整体消除,使用体外基本模型,如果有的话,人类PK。

2013年EMA

一般而言,应鉴定估计估计≥25%的药物消除的代谢途径的酶,如果可能的话,和体内贡献量化。这适用于CYP酶和非CYP酶。

PMDA2018

If it is presumed from the results of in vitro metabolism studies and clinical PK studies that a particular enzyme contributes by at least 25% in the total elimination of the investigational drug, then the enzyme(s) involved should be identified.

药物转运蛋白

Over the past ten years drug-drug interactions involving transporter proteins (rather than metabolizing enzymes) have been increasingly identified, and the development of in vitro transporter assays have become an area of active research for DMPK groups.

诸如P-GP,BCRP和MRP等流出的转运蛋白倾向于将药物代谢物从内部流出到细胞外部。oatp等摄取运输器倾向于将药物吹入细胞中。

At the moment,all regulatory authorities recommend using an appropriate in vitro model such as Caco-2 cells, transfected cell lines and/or vesicles/membranesto explore these potential interactions. At the same time, though, the agencies also recognize that the field of transporter interaction assessments is still rapidly developing. Therefore they suggest that for transporters where ideal in vitro models are still developing, the latest scientific advice and internal laboratory validations be followed and developed.

监管指导比较

FDA.2020 2013年EMA PMDA2018
作为基质:

Test for:P-GP,BCRP,OATP1B1,OATP1B3,OCT2,OAT1,OAT3,MATE1,MATE-2K

所有药物:测试P-GP和BCRP。其他运输司机,基于主要的间隙机制被认为是适当的。P-GP和BCRPpositive as substrate if: A net flux ratio (or efflux ratio (ER)) of ≥2 for an investigational drug in cells that express P-gp (e.g. Caco-2 cells or transfected cells overexpressing P-gp) • A flux that is inhibited by at least one known P-gp inhibitor at a concentration at least 10 times its Ki或IC.50
作为基质:

Test for:P-GP和BCRP阳性为基质IF:ER在CaCO-2细胞中> 2分别可以通过公认的P-GP / BCRP抑制剂抑制
作为基质:

Test for:P-GP和BCRP阳性作为基质IF:ER在CaCO-2或转染的细胞中> 2分别可以通过公认的P-GP / BCRP抑制剂抑制
oatp1b1,oatp1b3:
An investigational drug is considered an in vitro substrate for OATP1B1 or OATP1B3 if: the uptake of the drug in OATP1B1- or OATP1B3-transfected cells is ≥2-fold of the drug’s uptake in empty vector-transfected cells AND a known inhibitor can decrease the drug’s uptake to ≤50% at a concentration at least 10 times that of the Ki或IC.50
oatp1b1和oatp1b3:
对于估计肝脏消除的药物(总肝脏代谢+胆道分泌)> 25%的全身间隙。没有提出具体方法,但假设使用转染的细胞系的摄取研究是符合其他机构的适当。
oatp1b1和oatp1b3:
人肝细胞whose OATP1B1 and/or OATP1B3 transport activity has been confirmed should be used. The investigational drug is judged as a substrate of OATP1B1 and OATP1B3 when there is an uptake of the typical substrates and inhibition by typical inhibitors to the extent that can be theoretically estimated by the concentration of the added inhibitor and the Ki价值。细胞系expressing OATP1B1 and OATP1B3 can be used. The uptake of the investigational drug should be determined using cells in which the ratio of the uptake in the typical substrate in transporter-expressing cell line to that in a non-expressing cell line (uptake ratio) has been confirmed to be not less than 2-fold, and that uptake is inhibited by known inhibitors to the extent that can be theoretically estimated by the concentration of the added inhibitor and the Ki价值。在该条件下,当对研究药物满足与上述典型底物相同的条件时,研究药物被判断为OATB1B1和OATP1B3的基材。
Oct2,OAT1,OAT3,MATE1,MATE-2K:
The investigational drug is an in vitro substrate for the above transporters if: the ratio of the investigational drug’s uptake in the cells expressing the transporter versus the drug’s uptake in control cells (or cells containing an empty vector) is ≥2 AND a known inhibitor of the transporter decreases the drug’s uptake to ≤50% at a concentration at least 10 times its Ki或IC.50。与对照(载体对照)相比,如果转染细胞的摄取为2倍,并且可以通过识别的抑制剂抑制
Oct2,OAT1,OAT3,MATE1,MATE-2K:
根据主要的间隙机制,使用相关转染细胞系中的采样研究被认为是适当的。虽然由于出版年份,在2013年2013年指导下没有明确列出,但现在建议进行伴侣测试。
Oct2,OAT1,OAT3,MATE1,MATE-2K:
细胞系如上所述oatp运输车。*注意酸化应考虑配偶介导的运输。

DDI Testing as a Perpetrator Drug

抑制:作为药物代谢酶和转运蛋白的抑制剂测试

通常,犯罪者DDI评估开始于使用基本实验建模,并下面讨论使用的主要方法。

细胞色素p450抑制

细胞色素P450酶今天在市场上弥合约50%的小分子药物,因此是DDI评估的主要重点。CYP450的抑制是基于PK的DDIS的主要原因,以及CYP450酶(训练剂药物)的抑制剂的药物减少了通过抑制酶(受害者药物)代谢的其他药物的清除。

所有机构(FDA,EMA&PDMA)建议使用体外方法评估CYP450酶的抑制,并且该机构表明了类似的研究设计:

  • 使用[机构]recommen小组ded CYP450-selective chemical substrates and inhibitors to assess individual CYP450 enzymes.
  • 研究已经显示或理解临床相关性的CYP450酶(目前这些包括CYP1A2,2B6,2C8,2C9,2C19,2D6和3A4)。
  • 确定任何抑制常数,称为ki用于可逆抑制剂和kI/kinact.(抑制常数和灭活率)基于机理的抑制剂。

值得一提的是所有机构现在都建议抑制剂的未结合浓度(人肝微粒体)用于导出抑制常数K.i

监管机构还建议使用相同的方法来评估时间依赖的抑制(TDI)是DDI测试的越来越重要的组成部分。TDI的特点是抑制效力增加(通常是IC50)在代谢激活的时期(通常30分钟)后。

TDI is used as a marker of potential mechanism-based inhibition (MBI), which can be of more concern than reversible inhibition as MBI can be irreversible. Therefore the inhibitory effect of MBI is generally of a longer duration than with reversible inhibitors, and the body must synthesize additional CYP proteins to overcome the inhibition. Therefore, the risk assessment of an investigational drug is different for reversible and mechanism-based (irreversible) inhibitors and will require different approaches when assessed clinically.

CYP抑制在所有三个机构中完全对齐,并且所有在抑制剂的缺失和存在下都利用了代谢酶的固有间隙的比率 - 这被称为R值。

监管指导比较

FDA.2020 2013年EMA PMDA2018
肝抑制可逆抑制剂:
R1 = 1 + [I]/Ki≥1.02
Where:[i] =均值未结合c最大限度at the highest dose
肝抑制可逆抑制剂:
R1 = 1 + [I]/Ki≥1.02
Where:[i] =均值未结合c最大限度at the highest dose
肝抑制可逆抑制剂:R1 = 1 + [i] / ki≥1.02
在哪里:[i] =均值未结合c最大限度at the highest dose
肠道抑制
1+ [i]g/ K.i≥11
在哪里:[I]g= dose/250 mL
肠道抑制
1+ [i]g/ K.i≥11
在哪里:[I]g= dose/250 mL
肠道抑制
1+ [i]g/ K.i≥11
在哪里:[I]g= dose/250 mL
时间依赖性抑制
R2 = (kobs.+ K.deg)/kdeg
在哪里:
kobs.= (k×50×IMAX,U./(k我,U.+ 50×i最大限度,u)r2 = 1 + {kx [i] /(kI+ [i])} / kdeg1.25
在哪里:
[
i] =未结合的c最大限度x 50.
时间依赖性抑制
r = 1 + {kinact.x [i] /(kI+ [i])} / kdeg≥1.25
在哪里:[i] =未结合的c最大限度x 50.
时间依赖性抑制
r = 1 + {kx [i] /(kI+ [i])} / kdeg≥1.25
在哪里:[i] =未结合的c最大限度x 50.
胆量
r2 = 1 + {kx [i] /(kI+ [i])} / kdeg≥1.25
Where:[i] = 0.1 x剂量/ 250毫升
胆量
r = 1 + {kx [i] /(kI+ [i])} / kdeg≥1.25
Where:[i] = 0.1 x剂量/ 250毫升
胆量
r = 1 + {kx [i] /(kI+ [i])} / kdeg≥1.25
Where:[i] = 0.1 x剂量/ 250毫升

For transporters, all regulatory authorities recommend using an appropriate in vitro model, such as Caco-2 cells, transfected cell lines and/or vesicles/membranes. Sometimes for specific applications primary human cells such as hepatocytes and renal cells can be used to test for inhibitory interactions.

Regulatory GuidanceComparison

FDA.2020 2013年EMA PMDA2018
As inhibitor:

所有药物:P-GP,BCRP,OATP1B1,OATP1B3,OCT2,OAT1,OAT3,MATE1,MATE-2K

如果在口服给药,并且:i,调查药物有可能在体内抑制P-GP或BCRP,和:i胆量/我知道了50或K.i≥10

在哪里:
I胆量=剂量的抑制剂/ 250mL

Where:[i] 1 =平均稳态总数(自由和绑定)c最大限度[i] 2 =剂量(mol)/ 250ml
As inhibitor:

所有药物: P-gp, BCRP, OATP1B1, OATP1B3, OCT2, OAT1, OAT3, and preferably BSEP

肠道运输车:
例如p-gp:ki≤0.1x max剂量/ 250 ml

As inhibitor:

所有药物:P-GP,BCRP,OATP1B1,OATP1B3,OCT2,OAT1,OAT3,MATE1,MATE-2K

P-GP和BCRPMeasure ER of probe substrates in relevant cell line, if inhibition by test is observed and considered positive if:[I] / IC50>10

Where:[i] =最大剂量/ 250ml
oatp1b1和oatp1b3

如果R值为1.1:1.1,调查药物有可能在体内抑制oatp1b1 / 3:

r = 1 +((f向上×I.在,最大)/我知道了50)≥1.1

在哪里:f向上is the unbound fraction in plasma IC50is the half-maximal inhibitory concentration. I在,最大是肝脏入口处的估计最大血浆抑制剂浓度

使用OATP转运仪,建议添加预孵育阶段,因为一些药物已被证明是这些摄取运输器的时​​间依赖性抑制剂
肝脏吸收口服管理后:例如oatp1b1 / 1b3:ki≤25x未收集的最大浓度进入肝脏(我,最大限度,u) oatp1b1和oatp1b3:

测量相关细胞系中探针底物的摄取(通过使用对照抑制剂验证),如果观察到试验抑制,认为是阳性IF:1 + F,你,Bx I进口/ K.i≥1.1
Oct2,OAT1,OAT3,MATE1,MATE2-K:
如果我的情况,调查药物有可能在体内抑制这些转运蛋白最大限度,u/我知道了50值≥0.1.
Renal transporters hepatic efflux and uptake (OAT1/OAT3, OCT2, MATE1, MATE2-K:
Ki≤50 x unbound C最大限度

虽然由于出版年份,在2013年2013年指导下没有明确列出,但现在建议进行伴侣测试。
Oct2,OAT1,OAT3,MATE1,MATE2-K:测量相关细胞系中探针底物的摄取(通过使用对照抑制剂验证),如果观察到试验抑制,则认为是阳性的:

OCT2, OAT1, OAT3:1+(unbound C最大限度/ ki≥1.1

mate1,mate2-k:
1+(unbound C最大限度/ ki≥1.02

CYP归纳

The most significant regulatory changes have happened in the CYP450 induction area. Compared to previous versions of DDI guidance, the publication of the FDAs current guidance in 2020 has brought further harmonization between the agencies.

来自酶诱导的DDIS往往比用CYP抑制观察到的较小幅度(即,通常观察到受害者药物的较低血浆AUC偏移)。然而,酶诱导可以导致有毒代谢物的疗效和/或增加的形成。

所有机构现在都建议使用来自多个供体的培养的人肝细胞评估CYP诱导,其中具有初始细胞毒性测试,以帮助确定工作药物浓度。

所有监管机构都建议至少在第一个实例中测试CYP1A2,2B6和3A4诱导。FDA表明,如果观察到CYP3A4诱导,则还应评估CYP2C子系列的诱导(即CYP2C8,2C9和2C19),因为它们通过相同的核受体(PXR)诱导。但是,除了CYP3A4(通过PXR激活)之外,如果观察到CYP2B6诱导,还可以建议评估CYP2C诱导,因为CYP2C酶的诱导也可以通过启动CYP2B6诱导的CYP2B6诱导的串扰激活来引发。。

应包括原型(人类)细胞色素P450诱导剂,例如奥美拉唑(诱导CYP1A)和利福平(诱导CYP2C和CYP3A)作为对照,以帮助合理地用测试化合物观察到的任何感应效果的效力。

另一个变化是,从先前的指导sole index of induction can be based on a simple increase in levels of mRNA (assessed using real-time qPCR), as long as certain control values are met. Although measurement of the catalytic activity of the CYP enzymes is allowed, analysis of mRNA is still often preferred because the mRNA analysis is a more sensitive technique, and the possibility of a false-negative is minimized if the test compound is a metabolism-dependent CYP inhibitor. The EMA also recommend the measurement of free drug concentrations during the incubation phases on each day.

Regulatory Guidance
Comparison

通常,评估CYP诱导的三种主要方式:

  1. mRNA水平的折叠变化方法
  2. Correlation and calibration with positive and negative controls
  3. R值计算。
FDA.2020 2013年EMA PMDA2018
折叠变化方法:
RNA≥2倍与溶剂对照,浓度依赖性mRNA≤2倍但≥20%的阳性对照
折叠变化方法:
mRNA≥2倍的溶剂对照,浓度依赖性mRNA≤2倍但≥20%的阳性对照
折叠变化方法:
mRNA≥2倍的溶剂对照,浓度依赖性mRNA≤2倍但≥20%的阳性对照
相关方法:
方法1计算使用的相对感应分数(ris):(e最大限度×I.最大限度,u/(ec50+ I.最大限度,u)≤0.8
方法2.计算:I.最大限度,u/ EC.50值≤0.8.
相关方法:
预测通过已知阳性控制定义的阳性标准可以使用RIS:E最大限度x [I]/(EC50+ [i])
什么时候:[i] =未结合的c最大限度
相关方法:
未标明
R值法:
R3 = 1 / [1 + D×((e最大限度× 10 × I最大限度,u/(ec50+ 10 × I最大限度,u))] ≤0.8
什么时候:D是缩放因子,假设是1.如果通过使用EX的系统的先前经验,可以使用不同的值最大限度是在体外确定的最大感应效果最大限度,u是在稳态* EC处的相互作用药物的最大未结血浆浓度50浓度导致体外测定的半最大效果*考虑蛋白质结合测量中的不确定性,如果实验确定为<1%,则未结合的级分应设定为1%
R值法:
未标明
R值法:
未标明

在Silico建模中

越来越多的模型知情的药物开发(MIDD)在早期候选人开发期间纳入,以协助战略决策。基于曝光的生物和统计模型是使用临床前和/或临床数据来源开发的。yaboapp体育官网

In many cases, these models can also be used to predict data that cannot be generated readily experimentally. The FDA has increasingly stated their interest in integrating MIDD into development programs and there has been a dramatic increase in the number of submission packages (IND and NDA) that have在他们的发展计划中使用MIDD在2008年至2017年(> 250)期间。6

For DDI evaluation, PBPK models can be used to predict test item interactions with other drug(s) based on in vitro and in vivo data inputs. The model will help evaluate the impact of interacting drugs on the exposure of test article and vice versa, as applicable.

此外,MIDD可以为其他人群(疾病,种族,基因型年龄等)进行扩展。对于目标感兴趣的目标,可以更新和演进,可以更新和演变,可以提供模拟以支持给药方案的修改。

结论

在过去的10年里,体外科学已经推进了一系列越来越复杂的模型和仪表。我们现在拥有我们的处理不朽的细胞系,其用酶或转运蛋白(包括双转染)转染,生物产生使用哺乳动物细胞或细菌载体(其中),冷冻保存的肝细胞来培养和来自200多个捐助肝脏的人肝微粒体。我们还具有高压液相色谱和快速扫描的MS / MS仪表,从而推动检测限额较低的水平。

所有这些因素都与Silico Modeling的功能相结合现在允许科学家在体内对某些类型的DDIS进行更准确的预测,并通过适当的标签尝试和控制这些。As a result, the kinds of interactions that caused high-profile drug withdrawals during the late 1990s (e.g. terfenadine as a victim drug and mibefradil as a perpetrator drug) can now be largely predicted in the laboratory from in vitro data, and it is unlikely that this type of drug withdrawal (based upon inhibition of CYP450 enzymes) will happen again.

在考虑评估新化学实体的DDI潜力所需的体外信息时,该区域现有的监管指导提供了一个坚实的框架。


想了解有关药物互动测试的更多信息吗?联系我们


参考

[1] In Vitro Drug Interaction Drug Interaction Studies – Cytochrome P450 Enzyme and Transporter Mediated Drug Interactions Final – Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Rockville, MD, January 2020

[2]欧洲药物局委员会调查指南,2012年6月21日,CPMP / EWP / 560/95 / REV。1否。2 **,人体药品委员会(CHMP) - 最终完成2013年。

[3] Ministry of Labor and Welfare. Guideline on drug interaction for drug development and appropriate provision of information, notification No.0723-4, pharmaceutical evaluation division, pharmaceuticals safety and environmental Health bureau, Japan. July 23, 2018.https://www.pmda.go.jp/files/000228122.pdf.

[4]发展新的日本药物互动指南,用于药物开发,以及适当提供信息,药品和医疗器械机构,Chiyoda-Ku,东京,100-0013,日本https://doi.org/10.1016/j.dmpk.2019.11.009; 1347-4367/2020 The Japanese Society for the Study of Xenobiotics.

[5] Clinical Drug Interaction Studies —Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions, Guidance for Industry, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), January 2020, Clinical Pharmacology

[6]监管科学的生理学药代动力学建模:美国食品和药物管理局临床药理学办公室的更新.J Pharm Sci。2019年1月;108(1),21-25

缩写

  • ALDH = Aldehyde dehydrogenase
  • AME = Absorption, Metabolism and Excretion
  • ADR =不良药物反应
  • AUC = Area Under the Curve
  • BCRP =乳腺癌抗性蛋白质
  • CYP =细胞色素P450
  • DDI = Drug-drug interaction
  • ema.= European Medicines Agency
  • FDA =美国食品和药物管理局
  • FMO =黄蛋白单氧基酶
  • 我知道了50=导致50%抑制的抑制浓度
  • IND =调查新药
  • JMHLW =日本卫生部,劳动和福利部
  • ITC =内部运输机构联盟
  • 毛=单胺氧化酶
  • MBI =基于机制的抑制
  • MIDD =模型信息的药物开发
  • MRP =多电阻蛋白
  • MS =质谱
  • NCE =新化学实体
  • NDA =核退役权
  • OATP =有机阴离子转运蛋白
  • PBPK =基于生理的药代动力学
  • PK =药代动力学
  • PMDA= Pharmaceuticals and Medical Devices Agency
  • qPCR = Quantitative polymerase chain reaction
  • SULT =磺胺转移酶
  • TDI =时间依赖性抑制
  • UGT =尿苷二磷葡萄糖醛糖基转移酶

你也许也喜欢...

流行文章......